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Some topics in continuum theory of nematics

By F. M. LEesLIE
Department of Mathematics, University of Strathclyde, Livingstone Tower,
26 Richmond Street, Glasgow G1 1XH, U K.

This paper presents a concise formulation of continuum theory for nematic liquid

—~ crystals, both static and dynamic theory being discussed in turn. The emphasis is on
;5 P the various assumptions behind the theory, and the experimental evidence supporting
oln them. The resulting theory contains a fair number of material parameters, and progress
M concerning their measurement is assessed. Also, whenever possible, mention is made
" 6 of problems that remain unresolved.

L O
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1. INTRODUCTION

My primary aim in this paper is to present a concise but clear derivation of continuum equations
commonly employed to describe static and dynamic phenomena in nematic liquid crystals. My
starting point is a formulation of static theory due to Ericksen (1962), which clarifies mechanical
aspects and leads naturally to dynamic theory as a logical development of the well established
static theory. To keep the presentation reasonably brief attention is confined to mechanical
behaviour, and thermal considerations are largely excluded. Whenever possible, my presentation
attempts to bring out experimental evidence to motivate certain assumptions made in the theory,
as well as to serve as a means of either justifying or rejecting the theory.

It is now fairly widely accepted that the continuum theory discussed in this paper describes
the mechanical response of nematic liquid crystals reasonably well. This belief stems largely from
a number of analyses based on its linearized form which satisfactorily interpret various experi-
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mental observations. For example, one can cite in this context light-scattering, flow-induced
instabilities, thermal convection and electrohydrodynamic instabilities; accounts of these topics
are readily available in the books by de Gennes (1974) and Chandrasekhar (1977), and the
reviews by Stephen & Straley (1974), Jenkins (1978) and Leslie (1979). Here, however, my
concern is to show that the theory has the correct nonlinear form, and therefore my attention is
mainly given to predictions and related experimental evidence in support of this claim.

p
[\ \

i First attempts to measure the various material parameters in the theory led to a fair spread of
P values in many cases. There were of course certain reasons for this; for example some of the
O : methods of measurement were not wholly satisfactory, or impurities may have been present in
A the materials studied, or some of the nematics were simply chemically unstable. These factors
E 8 had the unfortunate effect of encouraging a greater tolerance of experimental error than might
~ normally have been acceptable. However, recently, with more stable materials and better

methods, improved results are emerging, and it is of interest to discuss such developments where
appropriate.

"To present the continuum equations concisely it is convenient to use Cartesian tensor notation
from time to time so that repeated indices are subject to the summation convention, a comma
followed by an index denotes partial differentiation with respect to the corresponding spatial
coordinate, and a superposed dot indicates a material time derivative.
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156 F. M. LESLIE

2. STATIC THEORY
Formulation of the theory

Oseen (1925) was the first to propose a continuum theory to model equilibrium configurations
of liquid crystals. He employed a unit vector field or director n(«) to describe the alignment of
the anisotropic axis in these transversely isotropic liquids, and assumed that spatial distortions
of this axis give rise to an energy density of the form

W = W(n,Vn), (2.1)

quadratic in the gradients of the vector. His theory was later reappraised by Frank (1958), who
gave an improved derivation of the energy function, essentially assuming invariance to super-
posed rigid rotations and to the sense of the director n, so that

W(n,Vn) = W(Qn, QVn Q) = W(—n, —Vn), (2.2)

the second-order tensor Q being proper orthogonal. In nematics, material symmetry further
restricts the functional dependence by the inclusion of improper transformations in the above
condition. Hence, if the dependence upon gradients is at most quadratic, one finds for nematics
that
2W = kyy(divn)? + kyy(n-curln)? + kyg(n x curln) - (n x curln)
+ (kg + ko) div{(n-grad)n — (divn)n}, (2.3)

the coeflicients being the familiar Frank constants, which are at most functions of temperature.
One approach commonly followed obtains equilibrium configurations by considering the
Euler-Lagrange equations for the minimization of this energy, a further contribution being
included to describe the influence of external magnetic or electric fields if present. The boundary
conditions generally adopted assume that the solid surfaces confining the liquid crystal dictate
a particular known orientation to the anisotropic axis at the surfaces, this depending upon their
prior treatment.

It is of interest to interpret the above in mechanical terms, this being helpful for the develop-
ment of a theory to describe flow and other dynamic effects. To this end, Ericksen (1961)
postulates a principle of virtual work of the form

5f de=f (F-5x+G-An)dv+f (¢-5x+5-An) da, (2.4)
14 14 0

14
where An = dén+ (§x-grad) n. (2.5)

Here V denotes a volume of liquid crystal with surface ¥, F and ¢ are body and surface forces, and
G and s generalized body and surface forces, respectively. Since incompressibility is assumed and
n remains a unit vector, the variation in displacement 84 and the material variation in the
director An are subject to the constraints

divéx =0, n-An=0. (2.6)

As Ericksen (1970) has shown, consideration of an arbitrary, infinitesimal, rigid translation in
which An is zero leads to the somewhat obvious balance of forces

dev+f tda =0, (2.7)
14 oV
[ 86 ]
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However, similar consideration of an arbitrary, infinitesimal, rigid rotation e, in which
dx=0x% An=oxn, (2.8)

leads to a balance of couples

f (xxF+n><G)dv+J (¢xt+nxs)da=0. (2.9)
v

oV
Consequently the generalized forces are related to a body couple K and a couple stress I through
K=nxG, l=nxs. (2.10)

With the usual tetrahedron argument, (2.7) and (2.9) become in point form

ty =tV Fitty; =0 (2.11)
and l’l: = li] Vj, K’I: +e’l:jktkj+l’l:j,]' = 0, (2.12)

respectively, v denoting the unit surface normal and ¢,;; being the alternating tensor. Also,
returning to (2.4) one finds that

ti]' = —*[Jtsw —_ (a W/ank’j) nk,i, l’l:j = eipknp aW/ank’j, (2.13)

where p is an arbitrary pressure arising from the assumed incompressibility, and d;; is the
familiar Kronecker delta. These latter results entail some manipulation of the left-hand side
of (2.4), and details are available in Ericksen’s paper.

Alternatively, however, if one rewrites the couple stress tensor /; as

liJ' = CipkpSkis  Sij = niﬂj+aw/ani,j, (2.14)
where g is an arbitrary vector, (2.12) with (2.10) becomes
€551 (Gl + Sip, ) F Cijie(brg + Skpty,p) = 0. (2.15)

Hence it is possible to introduce a vector g defined by

€8x = Ciji (b + SkpMy, p)s (2.16)
and the balance of couples (2.9) takes the alternative point form
G+ g+, =0, (2.17)

since from its definition g is indeterminate to the extent of an arbitrary scalar multiple of the
director n. Moreover, the invariance assumption (2.2) yields the following identity

eijk(njE)W/ank +n; , OW [0y, , + np,jOW/E)np,k) =0, (2.18)

first noted by Ericksen (1961). This, combined with (2.13), (2.14) and the definition of the
intrinsic body force g, gives
g = yn;— (n; ;) ;— OW [0m,, (2.19)
with y an arbitrary multiplier.
As for example Ericksen (1962) discusses, the body force and couple arising from an external
magnetic or electric field can be expressed in the form

Fy =0y [0x;, Gy =0y [On;, (2.20)
where for a magnetic field H
2y = 2y = x, H- H+ x,(n-H)?, (2'21)
[ 87 ]
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and for an electric field E
2¢p =2y, =¢, E-E+¢,(n-E)?, (2.22)

the coefficients ¥ and ¢ being material parameters. This being so, Ericksen shows that the
balance of forces (2.11) integrates with the aid of (2.13), (2.14), (2.17) and (2.19) to yield

p+W—y =p, (2.23)
where p, is an arbitrary constant. Also, the balance of couples (2.17) becomes
(oW/on; ;) j—oW/on,+yn;+G; = 0, (2.24)

the generalized body force having the respective forms
G; = 0 /0n; = Xony HiH;, Gy = 0o /On; = eyn; B E, (2.25)

should a magnetic or electric field be present. Clearly, therefore, Ericksen’s formulation identifies
the Euler-Lagrange equation mentioned above with a local balance of couples in the liquid
crystal.

Freedericksz transitions and Frank constants

The first experiments to be candidates for analysis in terms of the above theory were conducted
by Freedericksz & Zolina (1933). These experiments require that one first uniformly align a thin
layer of nematic liquid crystal between parallel plates by suitable surface treatments, and then
apply a magnetic (or electric) field perpendicular to this initial alignment. For small field
strengths, the influence of the surfaces dominates, but as the field strength increases a critical
value is reached beyond which the field becomes the stronger influence and distortion occurs.
In their experiments, Freedericksz & Zolina found that the critical field strength varies inversely
with distance between the plates for a given nematic. Other variations of the experiment are
possible, but in all cases that use parallel plates the critical field strength is apparently inversely
proportional to the layer thickness for a given material (see, for example, Ericksen (1976) or
Deuling (1978)).

For such problems the above theory reduces to an analysis of solutions of (2.24) subject to
some prescribed alignment at the boundaries, with of course the function I given by (2.3).
Rather clearly, if one introduces dimensionless variables by

¥ ={(x* H=Hh, (2.26)

and suitably scales the multiplier 7, the field strength H, assumed constant, and the gap width [
enter the problem solely through the product Hl, and therefore the predicted scaling necessarily
agrees with that observed. Thus this simple exercise supports the choice of the quadratic energy
(2.3), since presumably any additional nonlinearity in this function must lead to some predictions
at odds with observations. Equally, the choice of boundary conditions and body couple is
apparently vindicated.

Detailed calculations lead to precise predictions of the critical field strengths, these naturally
involving the coefficients in the energy function (2.3). Not surprisingly, this led initially to
attempts to evaluate these material parameters from experimental measurements of the critical
field strengths. However, determination of the precise point at which distortion of the alignment
commences is not an easy matter, and extrapolations from data above the thresholds can present
difficulties, as Tough & Raynes (1979) discuss. Consequently, more recent attempts to evaluate
these material parameters use measurements over a wide range above the critical fields, and

[ 88]


http://rsta.royalsocietypublishing.org/

AL A

71—\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SOME TOPICS IN CONTINUUM THEORY OF NEMATICS 159

determine values of the coefficients that provide a best fit to the experimental data. Such studies
on capacitance measurements by Bradshaw et al. (1981) and on optical data by Scheuble ez al.
(1981) and Bunning ef al. (1981) appear to have led to more accurate and consistent values for
the coefficients in the energy function.

One exception to the above remarks is of course the fourth energy coefficient k,,. Since the
corresponding term does not contribute to (2.24), this coefficient does not appear in any of the
predicted critical field strengths, nor in the description of behaviour above threshold. It does,
however, appear in the couple stress and the energy density in certain cases, but at present no
method appears to be available for its measurement.

3. DYNAMIC THEORY
Formulation of theory

Given that static theory describes equilibrium configurations rather well, one naturally seeks
to generalize it when proposing a theory for dynamic effects in nematic liquid crystals. One such
approach is to replace the principle of virtual work by a corresponding energy balance and
derive equations for conservation of linear and angular momenta from it by invariance arguments,
as for example Leslie (1979) describes. This leads to the rather natural extensions of (2.11) and

2.12 .
(2.12) pi; = Fi+ty; (3.1)
and G'(I)i = K’i +e’l:fk t/cf+lif,]" (3.2)
where v denotes velocity and o local angular velocity given by

0=nxn, (3.3)

any component parallel to n itself being immaterial in a director description. On account of the
assumption of incompressibility, the velocity @ is subject to the constraint

divo = 0, (3.4)

and the density p is simply a constant. The coeflicient o is a constant inertial coefficient, but the
inertial term in angular momentum is frequently neglected, being generally considered un-
important. As before, (3.2) can be recast as

otiy = Gy + 8+ S5 (3.5)
WhCI‘e eijknjgk = eijk(tkj +.S‘,cpnj,p), (3.6)

this again by using (2.10) and (2.14).

A natural starting point in the search for appropriate constitutive relations is simply to add
dynamic contributions to the relations (2.13), (2.14) and (2.19) of static theory, and therefore
one writes

tiyj = —p8i;— OW/Omy5) ny i+ Ly

& = yny— (nyfBy),;—OW/[On; + &,
where from the definition (3.6) and the identity (2.18)

€3 8 = €iji(Fus +Sup My, p)s (3.8)
[ 89]
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and these additional terms #, § and g all vanish in equilibrium. The early viscosity measurements
by Miesowicz (1936) clearly indicate that the dynamic contribution to the stress tensor depends
upon the alignment, and the somewhat related measurements by Zwetkoff (1939) suggest that it
also depends upon the rate of change of the anisotropic axis. Hence for a relevant theory it seems
necessary to assume that the dynamic contributions are all functions of the director, its material
time derivative, and the velocity gradients. Initially it is not obvious that one should not include
certain other variables in these relations, but those cited appear sufficient to cover many effects.

It seems reasonable to ask that the dynamic terms vanish in a rigid rotation, and this implies
dependence upon the velocity gradients and the director velocity solely through the rate of
strain tensor A and a vector N, where

1)]-’ i

24;; = vi,j'*‘vj,ia ‘Nz = hi_m/;lcnk: 2W; = (3‘9)

7] @7 %3

It is also natural to consider a linear dependence upon both, given the experimental evidence
mentioned above. Further, because this theory does not distinguish between n and —n, the
stress tensor must be unaffected by a change of sign in the vector n, but generalized stress and the
intrinsic body force must change sign with it. Such arguments coupled with invariance to super-
posed rigid rotations and appeal to nematic symmetries lead to

by = oy Ay + oty Nymy + g Njmy + oty Ay + ot Ay g ny + otg Aoy g, (8.10)
S5 =0, Zi= =v1N;—vadixmss (3.11)
where Vi = OQg— 0y, Vg = Og— 0, (3.12)

the coeflicients being at most functions of temperature. Earlier derivations of these relations by
Leslie (1968, 1979) show that the dynamic part of the generalized stressis zero by other arguments.
Of course thermodynamic considerations place some restriction upon possible values for the
coeflicients in the above relations. Leslie (1968) argues that positive entropy production requires
that

lijdi;— g N; > 0, (3.13)
and Parodi (1970) adds one further restriction, namely
Vo = ag+ 0y (3.14)
by appeal to an Onsager relation.
Scaling property

As Ericksen (1969) points out, the above equations have a rather surprising property when
external body forces and couples are absent. If one scales spatial coordinates and time by

& =lx*, = [2t% (3.15)

where [ is some constant, the transformed equations are identical to the original provided that
one neglects the inertial term in (3.5) and selects

p=107p*, y=17y* (3.16)
In this scaling, the director’s being a unit vector is not altered, but velocity and stress transform
according to v* =lv, t* =Pt (3.17)

This rather simple property leads quickly to certain conclusions that go a long way towards
vindicating the special constitutive assumptions outlined above.
[ 90 ]
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For example, consider a simple shear flow between parallel plates a distance / apart and subject
to a relative shear velocity V. The above scaling at once transforms this given problem into simple
shear flow between parallel plates with unit gap and relative shear velocity V*, where

V* =V, » (3.18)
but the prescribed surface alignments are unchanged. Given a unique solution to the problem,
it follows that n=n*=n*(x* V*) =n*([1a, Vi), (8.19)

because V'* is the sole parameter in the transformed problem. From this one notes that in simple
shear an optical property can depend upon ¥ only through the product VI. Ratherencouragingly,
Wahl & Fischer (1973) find such a dependence in optical measurements on a flow that closely
approximates to simple shear.

Moreover, if one defines an apparent viscosity # for simple shear by

n=1l/V, (3.20)

where 7 is the shear stress applied per unit area of plate, it follows that
N =71l/VI=1¥/V* = g*. (3.21)
Hence one finds that n=9* = F(V*) = F(V), (3.22)

& being some unknown function. Unfortunately no experimental data are available to allow
verification or otherwise of this novel prediction.

However, a similar analysis is feasible for Poiseuille flow, and for this flow Atkin (1970)
predicts that the flux @ per unit time from a capillary of radius R is related to the pressure

gradiant ¢ by Q = RA (aR?), (3.23)
the function " being unknown. Moreover, if one defines as apparent viscosity in this instance by

7 = naR*/8Q, (3.24)
it immediately follows that 1 =%(Q/R), (3.25)

the function % again being unknown. This result is in marked contrast with the corresponding
one for an isotropic liquid where the dependence is upon Q/R3, but it has been confirmed experi-
mentally by Fisher & Fredrickson (1969). These authors initially plot the apparent viscosity as
a function of the latter and obtain distinct curves for each of the four capillaries used. However,
they proceed to show that their data neatly fit a single curve when plotted according to Atkin’s
prediction.

As Leslie (1979) argues, this experimental confirmation of Atkin’s novel scaling, and also that
by Wahl & Fischer for simple shear, are particularly important because they largely vindicate
the particular form of the theory, especially the functional dependence assumed in the constitu-
tive theory. Any generalization of the above constitutive relations must quickly lead to pre-
dictions at odds with these experimental observations. Also, as Leslie points out, given the rapid
changes of alignment in the narrow capillaries employed by Fisher & Fredrickson, it is hard to
imagine that additional terms omitted in the above derivation could be negligible in these
experiments. In view of the relative importance of this topic, it is somewhat surprising that
essentially only two experimental investigations examine it. However, any generalization or
extension of the above theory for nematic liquid crystals seems premature until further experi-
mental evidence poinfs to violations of the scaling described above.

[ 91]


http://rsta.royalsocietypublishing.org/

A A

/

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

162 F. M. LESLIE

Flow alignment

Flow can exert a strong influence upon alignment in a nematic, and therefore a brief résumé
of this topic is helpful before proceeding to a discussion of methods used to measure the various
viscous coefficients. For most purposes it is sufficient to consider simple shear flow and to ignore
complications arising from the competing influences of boundaries and external fields. Here,
therefore, one examines solutions of the above equations in which the velocity and director have
Cartesian components of the form

=,

Uy = KZ, U , =0, k>0, ]\

' : : (3.26)
n, = cosfcosg, n,=cosfsing, n,=sin B,J

where k, 6 and ¢ are simply constants. This choice at once satisfies (3.1) and (8.4) rather trivially,
and reduces (3.5) to

Kk(ogcos? @ —oysin? ) cosp = 0, kaysinfsing = 0, (3.27)

the final expressions by using the relations (3.12) and (3.14). Whatever the values of a, and aj,
the above equations always have a solution

0=0, ¢=1in (3.28)

representing alignment normal to the plane of shear. In addition, if a, and a3 have the same sign,
there are two steady solutions in the plane of shear, namely

0= 10, ¢=0, (3.29)

where the acute angle 0, is defined by
tan? 6, = a,/a,. (3.30)
The thermodynamic inequality requires that y, be positive and so two possibilities emerge: either
ay<az<0 (0<0,< in), (3.31)
or ag > o, >0 (In< 6y < in). (3.32)

For the frequently observed alignment at a small angle to the streamlines, the viscous coefficients
must clearly satisfy the former.

An examination of time-dependent perturbations of the director shows that the solution (3.28)
is always unstable, and this configuration and its instability have been studied extensively by
Pieranski & Guyon (see, for example, Dubois-Violette e al. (1977)). If the solutions (3.29) are
possible, one is stable to such perturbations, and the other unstable. When the coefficients
satisfy (8.31) the stable configuration corresponds to that with the positive sign, but, if (3.32)
applies, the stable solution has the negative sign. It is of course possible to measure this flow
alignment angle 6, experimentally, and Gahwiller (1971, 1973) describes such measurements.
While there are solutions of the equations that demonstrate the competition between flow and
boundaries on alignment, their description is not attempted here, given their complexity. None
the less, the response of such flow-aligning nematics in shear flow is now reasonably well under-
stood (see, for example, Leslie (1981)).

However, as first discovered by Gahwiller (1972), there are nematics that do not align in
shear flow, this being ascribed to the coefficient a; changing sign for at least part of its nematic
temperature range, this generally preceding a transition to a smectic phase. For this type of

[ 92 ]
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nematic, the behaviour in shear flow is not as well understood. Two experimental studies, one
by Pieranski et al. (1976) and the second by Cladis & Torza (1975), investigate this and some
differences emerge. A variety of flow-induced instabilities certainly occur, possibly accompanied
by other complications, but theoretical investigations appear to be limited to an approximate
analysis by Pikin (1974), what is available in the two papers just cited, and a discussion of oscil-
latory shear by Clark et al. (1981). Certainly this topic deserves more attention than it has
received, although progress may be difficult.

The behaviour in shear flow certainly typifies the response in other viscometric flows as far
as one can tell at present. Little has been yet attempted with regard to flows that are not visco-
metric, presumably because there appears to have been little need for it. However, studies of
other anisotropic systems tend to look to liquid crystal thec.y for guidance, and such interests
may begin to motivate investigations of other flows.

Viscosity measurements

Viscosity measurements commonly employ a magnetic field to control alignment of the
nematic, while measuring some quantity that yields a value for the corresponding viscosity. The
assumption is that a sufficiently strong field completely aligns the liquid crystal, and the test of
sufficient strength is generally that measurements appear to reach some limiting value. The
theory employed is somewhat limited, simply assuming uniform alignment with possibly some
assessment of likely errors due to variations at boundaries.

To examine the information obtainable from such measurements it suffices to consider simple
shear flow with some arbitrary alignment (3.26). If one defines a viscosity by

. . N = lp/K, (3.33)
it follows straightforwardly that

7 = 9,s1n20 + (9, sin% @ + 9, cos? @) cos? 0 + a, sin? @ cos? O cos? P, (3.34)
where 2y = gy, 29 = Qy+0az+g, 20, = Qg+ 05— Ay. (3.35)

Hence from such measurements one hopes to obtain three viscosities corresponding to particular
alignments as follows:

(1> 0= 0, ¢ = %TC, N = Nas
(i) 0=0, ¢=0, 75=m, (3.36)
(111) 0= %—ﬂ, ¢ =0, N = e,

and the coefficient o; by a further measurement with alignment in the plane of shear.

Miesowicz (1936) was the first to attempt such viscosity measurements. He measured the
damping of vertical oscillations of a plate suspended in a nematic, calibrating his measurements
with a liquid of known viscosity. Because his magnetic field was horizontal he determined 7,
and 7,. Subsequently, Gahwiller (1971, 1973) carried out a complete set of such measurements by
measuring the flux through a rectangular capillary, again using a standard liquid for cali-
bration. More recently Kneppe & Schneider (1981) and Skarp et al. (1980) have also used
capillaries to make such measurements on nematics.

As de Jeu (1978) points out, there is some concern that the field strengths are sufficiently large
to ensure complete alignment, particularly for 7, Certainly many of the newer materials are
more viscous than those first studied, and consequently greater fields are necessary to overcome
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the stronger flow alignment. A further cause for concern is the lack of any theory to guide extra-
polation to limiting values. As Clark ez al. (1980) show in a somewhat related situation, extra-
polation without some theory to guide can be rather uncertain.

Given the above quantities accurately determined, the Parodi relation (3.14) and (3.12) yield

No—Ne = Vo (337)

and hence v, is also found. If the flow alignment angle is known, this provides the fifth measure-
ment and the o are determined. However, if the nematic does not align in shear, some other
measurement is necessary. One candidate is the experiment first employed by Zwetkoff (1939)
in which he suspended some nematic in a cylinder and rotated a horizontal magnetic field about
the axis of suspension. A measurement of the torque transmitted to the cylinder yields a value
for y,. Here again the theory used is relatively simplistic, and details are given by Gasparoux &
Prost (1971). More recently Gerber (1981) has described a similar experiment that appears to
remove most of the problems associated with ZwetkofI’s method.

At present insufficient measurements have been performed on a given material to allow
meaningful comparisons and checks for consistency. It is to be hoped that the progress made with
regard to the measurement of the elastic constants will encourage further efforts to determine the
viscous constants more accurately. However, there is clearly a need to develop alternative
methods, preferably with the use of small samples, although light scattering (see Orsay Liquid
Crystal Group 1971) and shear wave reflectance (Martinoty & Candau 1971) are possible
techniques meeting this requirement.
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